Saturday, April 25, 2015

We Need Help to Fund Summer Dinosaur Track Research!

Hello Dear Readers!

Regardless of the snow that is on the ground as I type, this is the time of year our planning kicks into high gear for this summer's field season. We have an exciting new dinosaur ichnology project (for new readers, ichnology is tracks, traces, and other "signs" left by dinosaurs other than their body parts), thanks to the sharp-eyed residents of the Peace Region who reported the site to us, and the guarantee that we can operate this year.

"Wait, Shaman - didn't you say you were office bound this summer in your last post?"

Indeed I am, friends. However, that doesn't mean I'm not hard at work ensuring the field season can happen for my Research Team. As a Museum Of Unusual Size (MOUS), we struggle every year to not only convince the Powers That Be that our institution (the Peace Region Palaeontology Research Centre) is a worthy project for conserving, archiving, researching, and interpreting British Columbia's fossil heritage, we have to justify WHY research should be funded. We have no access to research funding through provincial or federal means. We always approach the natural resource companies operating in the region for potential partnerships, and are usually given the same rebuff: "Our head office decides funding levels based on population size. You live in a small population center. You will get a small amount." Trying to convince them that this project is regional and provincial in scale does not make an impression.

This year we're trying something different. Two days ago I launched an Indiegogo campaign to crowd fund the research for our Williston Lake Tracksite (link to the "Research Dinosaur Tracks in Northeast BC, Canada!" campaign site here.)

There's good background information on the campaign page, but I'll also provide a summary here.

The new Williston Lake Tracksite is a large, flat exposure of the Gething Formation (Early Cretaceous, approximately 115 million years old). Dinosaurs in BC - and specifically dinosaur footprints - have a long, but little known history in the province. Tthe cultural history of many British Columbia residents of European descent (there may be First Nations historical recognition for the tracks - still hunting out info) has long assumed that "there are no dinosaurs in BC, they're found in Alberta" - I heard this so often growing up in BC that I wanted to scream. However, dinosaur prints were first found in northeast BC by geologist F. H. McLearn in 1922-23. Paleontologist Charles M. Sternberg led the first paleontology expedition to the Peace Region in 1930.

C. M. Sternberg named many new ichnotaxa (footprint types) from the Peace River Canyon Gething Formation sites in 1932 and on. This was the first extensively published description of Cretaceous tracks as a footprint community (ichnofauna). Several ichnotaxa were named:

Amblydactylus gethingi - here's a footprint and handprint pair from a different tracksite, not the original Sternberg locality.  Amblydactylus is thought to be made by a dinosaur related to Iguanodon.

Medium-sized herbivorous dinosaur print Gypsichnites pacensis (image not Sternberg's original site):

The small theropod footprint Irenichnites gracilis. This specimen is not from the original Sternberg localities:

Medium-sized theropod footprint Columbosauripus ungulatus (image not from Sternberg's sites):

Large-sized (and likely allosaurid) theropod prints Irenesauripus (from Sternberg 1932):

Last, but certainly not least, the ankylosaur footprints of Tetrapodosaurus borealis (image not from the Sternberg localities, but from our Flatbed Creek Trackway Tour site):

Later, Currie (1981) named what was, at the time, the oldest bird footprints known, and the second
bird footprints named from North America: Aquatilavipes swiboldae.
From Currie (1981).

There are two things I'm sure you have noticed by now:
1. The Peace River Canyon tracksites are important. Several type specimens come from there, and they are an important part of not only British Columbia's history, but the history of paleontology. The Province of British Columbia agreed, and in 1930 the Peace River Canyon site was designated as a Provincial Heritage Resource. Cool, right?
2. Most of the images are not from the original Peace River Canyon localities. Why? The Peace River Canyon localities, a Provincial Heritage Resource, are now flooded under the "Dinosaur Lake" reservoir of the Peace Canyon Dam. Despite a huge salvage effort by the Provincial Museum of Alberta (now the Royal Alberta Museum), led by paleontologist Dr. Philip Currie between 1976-1979 that recovered over 90 footprints, mapped 1000 prints, and in total documented 1700 prints, the sites and the in-place tracks were lost to future science, science outreach, and tourism opportunities.

This new site, the Williston Lake Tracksite, is the first large-scale track-bearing surface from the Gething Formation that has been seen since the flooding of the Peace River Canyon. We have this fantastic opportunity to continue Sternberg's and Currie's work.

First, we simply need to documenting the site. It won't really be simple: there's A LOT of site to be cleared (in yellow):

We need to map all of the footprints in place as they appear on the surface. We need to take latex and silicone molds of significant footprints and trackways. We also need to 3D-digitize the ENTIRE site.
We can take an entire tracksite back to the lab with us in 3D-digital replica format. Image from McCrea et al. (2014b).

Why do we need to do this?

We need to know a) what track types are there, b) what proportion each track type is in this slice of the paleo-ecosystem, and c) update or revise Sternberg's footprint identifications (as needed) with our advanced understanding of how footprints work - Sternberg did a great job in 1932, but our understanding of footprints has increased and changed a lot since then, and since the original Sternberg sites are inaccessible, we have this golden opportunity to research a site that is as close to what Sternberg saw as possible.

We can't miss this scientific opportunity. This is why we need your help. Some of the tracks are exposed, and we know from experience that the longer tracks are exposed, the more likely they are to be damaged by weathering (slow) and human selfishness (fast). We need to get in, uncover, document, and securely cover the site this summer. To do this safely and efficiently we need to replace our old equipment (truck, all-terrain vehicle) and pick up a new item: a secure cargo trailer in which we can store gear (we've had all of our sites robbed) and store specimens. We also need to feed our crew of staff and volunteers.

Once this site is documented, we hope that it can one day be used as a science-based tourism initiative. Our research this summer will be the basis for all of the exciting stories we'll discover about Early Cretaceous dinosaurs. We want to bring the Peace River Canyon tracks from their watery obscurity, if only by proxy, and tell their story to the world.

You can help us tell that story. The most important way you can help is to share the "Research Dinosaur Tracks in Northeast BC, Canada!" site with anyone interested in history, heritage, dinosaurs, and science education. If you have the means, we would greatly appreciate any contributions.

I know we can do this.


Currie PJ. 1981. Bird footprints from the Gething Formation (Aptian, Lower Cretaceous) of northeastern British Columbia, Canada. Journal of Vertebrate Paleontology 1(3-4):257-264.

McCrea RT, Buckley LG, Plint AG, Currie PJ, Haggart JW, Helm CW, Pemberton SG. 2014a. A review of vertebrate track-bearing formations from the Mesozoic and earliest Cenozoic of western Canada, with a description of a new theropod ichnospecies and reassignment of an avian ichnospecies. New Mexico Museum of Natural History Bulletin 62: 5-94.

McCrea RT, Buckley LG, Farlow JO, Lockley MG, Currie PJ, et al. 2014b. A ‘Terror of Tyrannosaurs’: The First Trackways of Tyrannosaurids and Evidence of Gregariousness and Pathology in Tyrannosauridae. PLoS ONE 9(7): e103613. doi:10.1371/journal.pone.0103613

Sternberg CM. 1932. Dinosaur tracks from Peace River, British Columbia. National Museum of Canada Bulletin 68:59-85

Friday, April 17, 2015

The Ultimate Reality TV - Live Nest Cams! (a.k.a. Theropods/Birds Do It, Bees Do It)

Hello Dear Readers!

Excuse me while I clear the digital tumbleweeds from my blog. Shaman is in full-tilt writing mode right now: I have two papers with fast-approaching deadlines, and thesis chapters to write. If all goes well, I may be finished my degree by the end of the year.

Be they papers or thesis chapters (also known as future papers), this means I'll be spending a great deal of time at my computer, sitting and writing and drinking more Earl Grey tea than is good for a person. I've mentioned in previous posts that I have a rather distracted part of my brain that insists on being entertained while I'm writing. Since I have neither cable nor satellite (and haven't yet taken the Netflix plunge), and since there are only so many times I can re-watch what I refer to as my writing movies, I have become an unabashed live nest cam addict.

It's not only the up close view of the personal lives of birds, or the rapid transition from a helpless ball of fluff to a fully functioning bird of prey (or of fish, or of flower...) that fascinates me about nest cams: being an unapologetic bird geek, I love being able to spread my love of the avian world around. A peek into the usually secret lives of birds, from egg laying to leaving the nest, and to be able to watch parental care of deadly predators (in the case of our birds of prey), it gives me a sense of connection with nature that I miss when I am office-bound. Teaching, and getting kids interested in the natural world is another interest of mine. Nest cams are great teaching tools, and the Cornell Lab (see link below) provides wonderful tutorials on how to incorporate live nest cams in to biology lessons.

I also have a paleontology interest in the nesting behaviors of birds. Birds are modern-day (or extant, for the technical term) theropod dinosaurs! There is great fossil evidence that theropod dinosaurs also engaged in nest building, active egg incubation, and parental care that is similar to what we see in modern birds. The best example (and best-known science story) of bird-like brooding in theropods is with Oviraptor philoceratops (the egg thief that loves ceratopsians). This story begins with the initial interpretation of thievery to explain its presence on a dinosaur nest full of eggs (thought to be the eggs of Protoceratops), and an associated skeleton of a predatory dinosaur with a toothless beak: both pieces of information led the researchers of the day (Osborn 1924) to suggest that Oviraptor was well-suited - and took advantage of - a diet that included eggs. Norell et al. (1999) examined an oviraptorid skeleton found in a similar position as the original Oviraptor specimen - a skeleton closely associated with a clutch of fossil eggs.

Figure 1 from Norell et al. (1999). Here's a link to the paper. Free to download from the American Museum of Natural History Research Library, along with many others!

The study of eggshell is a sub-discipline within paleontology much like ichnology: by studying the surface and microscopic details of eggshell, researchers can identify which animals laid the eggs. Dr. Darla Zelenitsky is an expert in the study of dinosaur egg shell and reproductive traits in dinosaurs: check out the research page for Evolution of Reproductive Traits in Theropods, and feast your eyes on an image of an oviraptorid skeleton with eggs actually inside the pelvic cavity!

(Note: Unfortunately, there are also many, many theropod eggs for sale online. These mostly come from Mongolia, and they are illegally removed from the country. As I've stated before, buying specimens like these supports fossil poaching and other illegal fossil-related activities. Yes, bad pun alert: the eggs you see for sale online are poached.)

To return to the story of Oviraptor, Norell et al. used the shape and texture of eggs that contained embryonic oviraptorid bone found in different parts of Mongolia and compared those eggs to the eggs found in a nest topped with an Oviraptor skeleton. Sure enough, the morphology of the eggs matched! These Oviraptor specimens did not die in the act of thieving a Protoceratops nest - they were incubating their own eggs. Of course, that does not suggest that Oviraptor didn't ever rob nests of other dinosaurs - modern birds, such as corvids (crows, ravens, magpies, jays), raid the nests of other birds. Food is food. However, what these nests and skeletons do show is that bird-like nest building and brooding are not restricted to our modern theropods - nesting is an old, old behavior for dinosaurs.

There is more evidence of nesting behavior in dinosaurs, but here is a very short list. Varricchio et al (1999) describe a nest attributable to the Late Cretaceous theropod Troodon formosus, and document both the crocodile-like and bird-like traits seen in the nest. The nesting hadrosaurs (duck-billed dinosaurs) from the Two Medicine Formation in Montana are another famous example (Horner and Makela 1979). Nests have also been well-documented for titanosaurid sauropods (Chiappe et al. 2004, for just one example).

Because of the increased information we have on the nesting behavior of dinosaurs, paleontologists are able to examine other aspects of dinosaur reproduction, such as when dinosaurs became sexually mature (check out the Erickson et al. 2007 paper here), and how active hatchling dinosaurs may have been based on the microstructure and development of their bones (Horner et al. 2000). There are even data that suggest Cretaceous snakes may have preyed upon hatchling sauropods: check out the paper and images by Wilson et al. (2010) here. Cretaceous nesting biology was just as complex and fascinating as is modern nesting biology!

If you want to see some modern theropods nesting and raising their young, here are the live nest cams I watch. All of the cams listed here have a bird incubating eggs, young in the nest, or are being actively investigated by potential nesters. This list is by no means an exhaustive list of all live nest cams everywhere - there are nest cams up all over the world, and this list is admittedly Canada and United States focused. If you have a favorite nest cam, please share the link in the comments section, and I'll add it to this list!

Cornell Lab of Ornithology Bird Cams - Here you will find great educational resources for incorporating Bird Cams in to classroom lessons! Their bird cams are:
  • Great Horned Owls, Skidaway Audobon - On air. The owls have fledged, but there are two Osprey that have been visiting the now empty nest. Will the nest be repurposed? Watch and find out!
  • Laysan Albatross, Anonymous - On air! Chick active and growing (with the occasional rooster prancing across the stage). A different kind of nesting strategy - ground-nesting! You also get to see parents feeding the chick, and adults performing display behaviors.

American Kestrel Partnership Bosch KestrelCam - On air, and there may be five eggs in the nest! Kestrels are cavity nesters, and you can find instructions on how to set up a nest box for American Kestrels here.

The Peregrine Fund Peregrine Falcon Nest Cam, Boise, Idaho - On air. Mother is on the nest at this writing. It is not uncommon to find Peregrine Falcons living in urban areas, as these birds of prey are most often seen in a mountain habitat and are cliff-nesters. This is why we find Peregrine Falcons nesting on ledges of tall buildings.

Alessondra's OKC Great Horned Owl-Cam - Great Horned Owls decided that a planter makes a great nest! The nest cam was set up by homeschooling family and used as an educational tool. Off air now that fledging has taken place for the year. Will they return for 2016? [Note: if you watch the farewell video, the starting theme music and sad tones had me worried that the owls had died. Happy Spoiler: they successfully fledged.]

Pennsylvania Bald Eagles, Hanover, Pennsylvania Game Commission - On air, and two chicks (looking quite theropod-y) are in the nest!

Bella Hummingbird's Nest Cam, La Verne, California - On air, and the tiny nest is crammed full of two Allen's Hummingbird chicks!

Happy Nest Viewing!


Chiappe LM, Schmitt JG, Jackson FJ, Garrido A, Dingus L, & Grellet-Tinner G. 2004. Nest structure for sauropods: sedimentary criteria for recognition of dinosaur nesting traces. Palaios 19(1):89-95.

Clark JM, Norell MA, & Chiappe LM. 1999. An oviraptorid skeleton from the Late Cretaceous
of Ukhaa Tolgod, Mongolia, preserved in an avianlike brooding position over an oviraptorid nest. American Museum Novitates 3265:1-36.

Erickson GM, Curry-Rogers K, Varricchio DJ, Norell MA, & Xu X. 2007. Growth patterns in brooding dinosaurs reveals the timing of sexual maturity in non-avian dinosaurs and genesis of the avian conditio. Biology Letters 3(5):558-561.

Horner JR & Makela R. 1979. Nest of juveniles provides evidence of family structure among dinosaurs. Nature 282:296-298.

Horner JR, Padian K, & de Ricqlès A. 2001. Comparative osteohistology of some embryonic and perinatal archosaurs: developmental and behavioral implications for dinosaurs. Paleobiology 27(1):39-58.

Osbom, HF. 1924. Three new Theropoda, Protoceratops zone, central Mongolia. American Museum Novitates 144:1-12.

Varricchio DJ, Jackson F, & Trueman CN. 1999. A nesting trace with eggs for the Cretaceous theropod dinosaur Troodon formosus. Journal of Vertebrate Paleontology 19(1):91-100.

Wilson JA, Mohabey DM, Peters SE, Head JJ. 2010. Predation uponh atchling dinosaurs by a new snake from the Late Cretaceous of India. PLoS Biol 8(3): e1000322. doi:10.1371/journal.pbio.1000322

Thursday, March 12, 2015

Early Bird (Tracks) in British Columbia: Introducing Paxavipes!

Hello, Dear Readers!

It's been awhile since I've dusted off the Blog: it's been a stressful time for the Shaman, and while Tolkien made the apt observation that harrowing tales make the best stories (The Hobbit), I'm bored of thinking about it, and would much rather talk about paleontology! Our research group had a fun time publishing on my favorite subject: BIRDS! Specifically, we have a recent paper in Cretaceous Research on a new avian ichnotaxon (footprint type) from the Peace Region of British Columbia!

Please join me in welcoming Paxavipes (Peace bird footprint, in reference to the Peace Region) babcockensis (in reference to Mount Babcock, the mountain on which the specimen was discovered) to the ichnological family! OK, that's not taxonomically accurate, as Paxavipes is also part of a new ichnofamily. Bear with me.

Bird tracks have been known from British Columbia, and specifically the Peace Region, since their scientific debut in 1981 with Aquatilavipes swiboldae (Currie, 1981). This specimen was recovered as part of the salvage and study operation performed by the then Provincial Museum of Alberta before the completion of the Peace Canyon hydroelectric dam. The area was so well-known for its palaeontological heritage that it was officially designated a Provincial Historic Resource in the 1930s. Today you would need gills and fins (and a whole bunch of de-silting equipment) to see these localities, as they are now underneath what is known as Dinosaur Lake. The type slab for Aquatilavipes swiboldae now resides in the Royal Tyrrell Museum of Palaeontology (RTMP). At the time of its scientific write-up, it was the earliest known bird track type, being from Gething Formation deposits that are Lower Cretaceous (Aptian, approximately 125 - 113 million years old). Since then, no bird footprints have been published on from British Columbia...until now.

The rock slab on which Paxavipes are preserved was discovered in 2005 by a (then) doctoral student Curtis Lettely (University of Alberta). The slab was discovered in an area locally called The Boulder Gardens. The Boulder Gardens is series of hiking trails leading outdoor adventurers through a gorgeous sup-alpine terrain of visually stunning sandstone erosional features. Check out more information on the PDF here. Boulder Gardens is within the boundaries of the newly established Tumbler Ridge Global Geopark. The Boulder Gardens showcases rock from the Boulder Creek Formation, which is Early Cretaceous (middle-upper Albian, approximately 100 to 105 million years old.)

This was an interesting slab. The rock slab was found vertically embedded in eroded rubble and dirt, and what was exposed was covered in many lichen colonies. Lichen is hard, crusty, and hides any surface details it covers. We could see that there were small theropod footprints (Irenichnites-looking prints), and a few visible bird footprints, but did not know how many prints were preserved on the surface, or anything detailed about their shape, with all of that crusty lichen. That lichen had to go...

Fig. 2 of PRPRC 2005.001.015 from Buckley and McCrea (2009). It's easy to see which part of the slab was exposed for lichen colonization.
...but carefully. Lichen is a resistant organism - what else can you expect when fungi and cyanobacteria form an alliance (symbiotic relationship)? Mechanically scraping off the lichen was not an option, as that would have risked mechanically scraping the track surface and the prints it preserved. After trying out a few different chemicals, we saw that a dilute bleach solution effective at breaking down the lichen to a point where it could be gently brushed away with a soft toothbrush. The technique worked so well that it became the topic of my first first-author publication (Buckley and McCrea, 2009).

Once the lichen was removed, the surface was revealed...and what a reveal! A grand total of 72 bird footprints were visible, which enabled us to make out five trackways - series of footprints made by one bird walking from Point A to B. Single footprints are like an isolated bone or tooth - they give us good information, but not as much as a whole skeleton does. Trackways are like the whole skeleton.

Fig. 4 from Buckley and McCrea (2009) So many bird footprints were visible once the lichen was removed!

Another cool "after lichen" reveal was that the small theropod footprints had tiny skin impressions on them! Check out the teeny tiny pebbly texture:
Fig. 6 from McCrea et al. (2015). Skin impressions such as these give us a good idea of what the soles of dinosaurs' feet looked like. These tubercles likely acted like the treads on our running shoes.

Back to the birds. Since we have trackways, we could tell left footprints from right footprints, but not easily. There was something odd with these particular bird footprints. The usual case for bird footprints is that the outer toe is much more splayed away from the middle toe than is the inner toe (or the toes have a roughly equal amount of splay). These footprints were strange in that the inner toe was more splayed than the outer toe. It wasn't just one or two footprints out the 72: it was the majority of the prints.

Fig. 4 from McCrea et al. (2015) showing the holotype trackway - see the wider splay between the inner digits?

Something was up. There is a bit of natural side-to-side wiggle potential in bird toes, and modern bird footprints can show a big differences in toe splay (70 degrees to 140 degrees between the outer digits), but a consistently larger splay between the inner (digit II) toe and the middle (digit III) toe is not common in Cretaceous avian bird footprints. The only other bird footprint type that shows this toe arrangement is Barrosopus slobodai (Coria et al. 2002) from the Late Cretaceous of Argentina. Because these two footprint types are unique when compared to all other Mesozoic bird footprints (but different enough to still be considered separate footprint types), we formed a new ichno (footprint) family of bird prints called the Paxavipedidae. Any new three-toed bird footprint (no hallux) with consistently wider splay between digits II and II than between digits III and IV and thick digits can be assigned to this new footprint family.

As an ichnologist, when I see a repeated footprint shape or toe arrangement within all that natural variation, I begin to think about the shape of the foot. Specifically, I think about the features of the skeleton that made that footprint shape possible. Looking at modern birds, Paxavipes and Barrosopus prints are very close in shape to footprints of the Killdeer (Charadrius vociferus).

I love this image by Ryan Hodnett, found on Wikipedia. No, Killdeer are not some strange Octo-Bird: those are young Killdeer hiding under the parent.
Looking at the foot bones of a Killdeer (welcome to my thesis!), the end of the metatarsals (the lower part of the "leg" of the birds that you see hiding in the above image) are shaped in such a way that the inner toe (when attached) is going to be more splayed than the outer toe! Footprints may not always match the skeletons of feet perfectly, since living feet are covered with skin and muscle. In some cases, like with two-toed dromaeosaur trackways, there are features of the animal's skeleton that are expressed in the footprints. When we find these features, we have a good chance of predicting what the skeletal foot of these track-makers would look like. We haven't yet found the track-maker for Paxavipes, but we have a good chance of recognizing it when (if) it is found! [NOTE: This doesn't mean that Killdeer were around in the Early Cretaceous: this means that a bird with a foot shape that resembles a foot of a Killdeer was around in the Cretaceous.]

Next time you are walking along a beach and see little brown and white shorebirds skittering along the edge of the water looking for yummy invertebrates, think about a Cretaceous shoreline: you would likely notice the dinosaurs first, but the small shorebirds still made quite an impression!


Buckley LG, McCrea RT. 2009. The sodium hypochlorite solution for the removal of lichen from vertebrate track surfaces. Ichnos 16(3):230-234.

Coria RA, Currie PJ, Eberth D, Garrido A. 2002. Bird footprints from the Anacleto
Formation (Late Cretaceous), Neuqu en, Argentina. Ameghiniana 39(4):453-463.

Currie PJ. 1981. Bird footprints from the Gething Formation (Aptian, Lower Cretaceous) of northeastern British Columbia, Canada. Journal of Vertebrate Paleontology 1(3-4):257-264.

McCrea RT, Buckley LG, Plint AG, Lockley MG, Matthews NA, Noble TA, Xing L, Krawetz J. 2015. Vertebrate ichnites from the Boulder Creek Formation (Lower Cretaceous: middle to ?upper Albian) of northeastern British Columbia, with a description of a new avian ichnotaxon, Paxavipes
ichnogen. et isp. nov. Cretaceous Research 55:1-18.

Tuesday, February 3, 2015

Fortune Cookie Advice - For Real

Since this advice works as well in the coffee house, tea shop, or cafeteria as in the pub, here's my post full of nuggety accumulated experience advice that I posted on the Prehistoric Pub, dealing with the pitfalls and the advice to (hopefully) avoid them in academia (with a paleo slant, of course).


I'm picking up a shift at the Prehistoric Pub today. Faces come and go, but if they are the faces of students starting out in paleontology, there is a look they all have in common at one point or another: that look when you jump into the deep end and realized at the last moment that you aren't as strong a swimmer as you thought. The look of feeling in over your head, feeling overwhelmed.

That feeling that makes you sit down and mumble to your confidant "I don't know if I can do this."

If that describes you or someone you know, have a seat at the bar. I've got some advice that I've accumulated from time, some experience of learning from dumb-ass mistakes, and some experience of learning from events that you simply can't control, and hopefully a way out of the seductive mind-traps that we all fall into.

Wine? Beer? Soda? Mineral water? Hot chocolate? The virtual bar is well-stocked.
I can only speak from my experiences, and the experiences of what I observed in student colleagues, colleagues, advisers, and mentors. All of my advice comes to you through my personal filter. 

Do what you love, and you will work harder than you have ever worked in your life.

If I could find the person who first said "Do what you love and you'll never work a day in your life", I'd give them a metaphorical smack on the back of their head. (This quote gets attributed to Confucius, at least according to goodreads.) More accurately, I'd give this metaphorical smack to those who use this quote to say that doing what you love is easy, while doing what you don't like is difficult.

I love paleontology. The exploration, the discovery, analyzing data, writing up the papers, telling the stories of the past of our planet to kids, the public, and colleagues - it's an honor to be part of the system that opens the doors to understanding our past.

If it feels like a difficult system to be a part of, it is. It takes a lot of time, a lot of training, and a lot of discipline to get into a position where you can start unraveling the mystery of the history. In short, it takes a heck of a lot of hard, hard work.

I was at a conference, standing around and chatting with colleagues in between talks. A prospective student who was interested in joining a certain lab had joined the conversation. Student started asking questions. These questions started to piss me off:

Student: "I know So-and-So-Grad-Student in this lab, so that will make it easier for me to get in, right"?
Us: "That's not how you get into a lab. You have to contact the PI and see if they are taking students. Even if they are, you have to submit your proposal and application like everyone else."

Student (persisting): "You people are clearly succeeding. What are your tricks?"
Me (rather irritated at this point, and yes, I swore): "Tricks? There are no tricks. This is hard-ass work, and I'm a tenacious bitch. That's why I've made it this far."

The others who were with me started giving the now shocked Student, um, softer good advise (for lack of a better word), but I was annoyed by this line of thinking. Clearly hard work was not first and foremost in this Student's mind. They persisted on believing there was a gimmick, a trick, a sham that made all of this seem so easy.

My wish is that I never make this look easy. I don't ever want to fool people into thinking it is easy. There is no innate brilliance that makes paleontology easier for some and harder for others. It. Is. Not. Easy. This shit is hard - hard to do, hard to keep the energy and ambition up to do it. Loving what you do gives you something to focus on when you're submitting yet another grant application, when you're rewriting that paper that got rejected again, when you're told by your funding agency that they support museums but don't support research. Maybe you've made a mistake that is now going to cause you seemingly endless hours of work to correct. Maybe you're trying out something new, and there is no clear path to follow. That happens. That love for your path is your carrot, the hard work is the stick. You can't have one without the other. Loving what you do doesn't make the bullshit easier to deal with - it just gives you a target at which to look past the BS. Do what you love, and you will work harder than you ever have in your life because you will want to make it work.

Who are you?

This next story makes me sad. The Student character represents several individual students I've seen through teaching labs, running volunteer programs, and being in labs.

I know this Student is bound and determined to pursue paleontology as a career, and I have not even spoken to them yet. How can I tell? Student has come to class wearing an Indiana Jones fedora, hiking boots, canvas pants, and a pocketed photographer's vest. They announce in grand tones that they are going to study dinosaurs, and scoff at using mammal bones in osteology labs. It's bones, after all. Student knows bones, because dinosaurs. Student receives soul-crushing 20% (or lower) on the bone lab, and, fighting back tears of disappointment, comes to the lab instructor all confused. HOW?

Here's a confession. I was that student. On my first comparative anatomy bone lab I crashed and burned, Chicxulub-style. I may not have had the fedora or the vest, but I was convinced that years of being a dinosaur fanatic was enough to prepare me for what it takes to be a scientist. Hell no.

Why does this scenario make me sad? I saw the same familiar pattern repeated in each new set of undergraduates. They are so determined to assume the mantle of paleontologist that they take an idealized, TV-promoted distillate of what a scientist appears to be and lose themselves in that ideal because that is all they know about the people who do paleontology. They only know what they have seen in the media, in books, in movies. These students have no sense no real sense of who the people they idolize are, and no sense of who they themselves are as individuals. Cosplay is all fun and games until someone loses their identity.

Make sure you develop who you are, inside and outside of the scientist realm. If you don't yet know, that's OK. It's a constant work in progress. An easy way to do that is start by a fill in the blanks exercise. "I am a scientist who feels/does/thinks _________." What's in your blank? Is it art? Jazz dance? Bar tending? Archery (guilty)? Martial arts (guilty)? Are you a bird fanatic (guilty)? Do you have causes you are passionate about? Great! You do not have to give up who you are or the non-paleontology (or science) things that excite you to be a paleontologist. They are part of your identity. Being comfortable in your own skin, quirks and all, will go a long way to helping you identify who you are as a scientist. Scientists are people, and people have varied interests. Be a person...

Do Unto Others...

...unless that person is a jerk. Do. Not. Be. A. Jerk.

All paleontologists are people. Some people act like jerks. Therefore, some paleontologists are going to act like jerks. You will encounter jerks. I'm sorry. It sucks to be on the receiving end of such behavior, especially if others brush it off as "Oh, that's just So-and-So. Pay it no mind."

There is no rule that someone has to be who you would classify as a good person to be a good scientist. There are no end of stories of people who have done good work, even brilliant work, and have been people you would not want to go to the pub with, be in the lab alone with, or share research ideas with. Some people are just jerks. It might be that they don't know they're jerks. It might be that they just don't care. Regardless, the outcome is that they hurt colleagues and students, building resentment and distrust in a community which is so much more than a sum of its parts.

Some people, intentionally or otherwise, try to emulate their jerk-heroes, or buy into the destructive culture of a particular lab setting. Here's a personal example: I interned at a (non-paleo) lab in my youth. My supervisors were two men in their mid-late 30s. The room in which they conducted my orientation was decorated with female porn centerfolds. It was also the room in which my temporary desk was placed.

I did not feel like I belonged in that lab. It felt like the supervisors were symbolically telling me this was a no-girls allowed space. It gave me a sick, disgusting feeling when they would look at their centerfolds while talking to me. I was horridly uncomfortable. I was also scared. I was scared to tell anyone because I thought I would get in trouble for making a fuss. I was scared that, by not playing along with this lab environment, I was not cut out to be in science. I was scared of not being accepted by the boys' club culture of the lab. Not only did I make it through the one day introductory orientation, I chose that lab to work in to prove that it didn't get to me, to prove that I belonged. I didn't want to rock the boat and call this out for what it was: inappropriate and unacceptable in a professional setting.  I thought speaking out was a weakness. I was so wrong. It is never weak to call out BS. Always stick up for yourself. Always stick up for people who are not in a position (or don't feel they can) stick up for themselves. Don't contribute to a culture you would not want to be on the receiving end of.

Here's some advice that needs to be emphasized a heck of a lot more than it is now: the ends no longer justify the means in science. The culture of accepting crappy behavior from someone just because they do exciting work is dying a long-deserved death. There are now enough people in paleontology that you don't have to suffer a jerk when you encounter one. And, in the event that you do encounter a jerk, there are people and resources there to help you. Don't keep it silent.

You do not need to belittle others, downplay their work, be jealous of them, steal their work or credit, or marginalize them to do good science. If you feel the need to do that to be in science, to be in paleontology, sit yourself down for a second and ask "Why am I doing this?" If "being the best" is your goal instead of "doing your best", it's deep self-reflection time. Take-home message: if you wouldn't want to be on the receiving end of your actions, your actions are inappropriate. If someone tells you your actions are inappropriate, you owe it to yourself and the people you work with to consider that they might be correct.

...Oh, and if you are called on jerk-like behavior, DO NOT try to justify it as "Oh, I was just so excited and eager" and other lame-ass excuses. When people say that to you, they are saying that their obnoxious behavior towards you is justified because of science. No. Science does not need people who try to use students to access your data for a paper that they have not told you about, but are going to try to publish first (for an extremely specific example). Science does not need the person who is so desperate to be noticed (or is a show-off) that they belittle someone during the Q & A of their talk. As Andy Farke said, to quote the great ones, "be excellent to each other."

Who are you racing against?

Have you ever had one of those days when you feel as though you are "behind"? You're publication list is woefully small compared to that of a lab colleague. You were rejected for that NSF/NSERC grant, while your lab colleague's was successful. Here is my favorite: did you start your program before those people who are now Ph.D.s?

Welcome to the race. Except that it isn't a real race. Oh sure, there is competition for research money, for publication spaces, for talks, for jobs. Even so, one of the biggest morale killers is feeling and behaving as though you are competing against someone. (That feeling could also tempt you down the Jerk Path.)

I get it. It's likely the most common mind-trap I fall into. I've looked at people younger and better funded than me and have thought "I don't stand a chance against this. How can I possibly compare?" The honest answer is that I can't compare. No one can compare, because every person's situation is unique to them and them alone. The only person in your race is you. You have to find your own academic pace so that you can complete a marathon, not a sprint. Don't feel that you have to burn yourself out: there is a culture in academia that accepts stress and pushing oneself to the breaking point as some sick badge of honor, and it's dangerous. There are enough challenges in academia without approaching it with the attitude of being "better" than someone, or trying to "win". Also, do not buy into the notion, if you find that academia isn't for you, that you are a failure. I call shenanigans on that idea. You are going to feel loss and disappointment over a plan that did not work out. You have to rethink the idea of failure. If A doesn't work out, then that means you should try X. A plan not working is an opportunity (albeit a bloody frustrating one) to try something different. You have failed no one.

You are not alone in feeling the way you are. You are surrounded by people at all stages of their academic careers who have felt this way at one time or another. There are people who will give you advice. Some of it will be good. Some of it won't be good for you. You get to choose what advice you follow.

Remember the way you feel now. One day a student or a colleague is going to come to you and say "I don't think I can do this.

Wednesday, January 21, 2015

Advice for Students Feeling...Well, You Know the Feeling.

Hello Dear Readers,

Every once in a while the Shaman comes up with a nugget or two of wisdom. These nuggets are dug from under a layer of dirt made of a combination of learning from my own silly mistakes, observing experiences of others, and from enduring those situations that are sometimes out of our control.

All of this has given me strong opinions on the approach and conduct of people in vertebrate paleontology, although I imagine this has applicability to any STEM field. I'm fairly open about sharing what I think with others when they ask. A friend recently told me "You're advice is awesome! It's really helped me. It should be in fortune cookies!" All of my fortune cookie baking attempts have been sad, but what I decided to do was to put some of this advice in blog form. I share some embarrassing stories, one rather painful creepy story, and a couple of frustrating experiences. These stand out in my mind when someone asks me "How do you think I should do X?" Needless to say, I'm going to steer people away from being the future subject of someone's creepy/frustrating/embarrassing story.

Check out my post at the Prehistoric Pub: Fortune Cookie Advice...For Real!


Thursday, December 11, 2014

Tales from the Field: The Early Bird!

One of my favorite parts of paleontology is being able to visit historic locations: the place where the first of something was found, or the museum where a famous figure worked. One of my favorite memories of working on my Coelophysis project for my M.Sc. (now finally published as Bulletin 63 of the New Mexico Museum of Natural History!) was seeing the articulated nesting skeletons of Oviraptor at the American Museum of Natural History.

Type localities are a big deal in vertebrate paleontology. It's the location of first contact with a part of the Earth's history that has never before been seen and recognized for its importance. They are also the place where present and future researchers can visit and continue to collect information using new ideas and techniques. Also, these sites are bloody cool!

I had a great opportunity to visit the type locality of Ignotornis mcconnelli, the very first Mesozoic bird footprint ever named. Ignotornis was named by Maurice Goldsmith Mehl (1887-1966) in 1931 from a locality "one and a half miles northwest of Golden, Colorado". The specimen was found by N. H. McConnell and donated to the University of Colorado at Boulder. This specimen, the holotype specimen, is UCM 17614.
Ignotornis mcconnelli holotype slab, figured in Lockley et al. (2009).

"Hold up, Shaman: what's a holotype?"

A holotype is the one physical example (it can be a picture, if there is no physical specimen) of an organism (or the trace of an organism) that is being given a unique name. The type is also the specimen to which other similar-looking specimens must be compared when you name a completely new specimen. There are many different categories of types, and many, many rules governing how the different types are named and under what circumstances. This is governed by the International Code of Zoological Nomenclature. For example: did the original physical specimen go missing and you want to make a different specimen the reference? There's a rule for that!

One of the great things with science is that there is always an opportunity to clear up confusing statements. When Mehl described Ignotornis, he made reference to other track-bearing slabs, but didn't really state how they were related to the type (although they were all originally cataloged under the same number), or make specific mention of which rock layer in the outcrop these slabs came from. Lockley et al. (2009) cleared up this bit of confusion and used these other track-bearing slabs to re-examine Ignotornis mcconnelli (and provided lots of great data and images), and formally name these other slabs as additional reference (type) specimens. Lockley et al. also narrowed down exactly how old Ignotoris is by tracking down (pun completely intended) the discovery site of the original specimen, which is in the Cretaceous Dakota Group, Albian - Cenomanian (approximately 113-94 million years old) in age.

Ignotornis mcconnelli was the first footprint type attributed to a bird by a long lead: Koreanaornis hamanensis was named in 1969, and the Peace Region's own Aquatilavipes swiboldae was named in 1981. The ichnogenus Ignotornis existed for 75 years with only one ichnospecies until 2006 when Ignotornis yangi was named (Kim et al. 2006), and in 2012 Kim et al. named Ignotornis gajinensis, which has a great feeding trace associated with the trackway (both from South Korea)

I visited the rediscovered type locality of Ignotornis mcconnelli in October in the company of Martin Lockley and Rich McCrea. It is not exactly the most obvious of localities: the mountain-building processes of the region have uplifted and shifted the rock layers around quite a bit, and I had a scary moment of having to climb up and over a vertical piece of sandstone and scramble down a steep slope to get to the locality. I don't like heights (which surprises many, given the amount of vertical track work I do), but that was not going to stop me from visiting this site.

This was the easy part of the climb. There are no pics of the scary part: I needed both my hands to keep from dying.
Once I finished my scramble (and vocalizations reminiscent of a cat stuck up a tree), I was there: I was at the discovery site of the first Mesozoic bird footprints! The site did not disappoint.

Ignotornis mcconnelli, in the flesh, er, foot!
See the hallux (otherwise known as digit I) impression? See the wide splay of the digits? These are classic bird footprint identifiers. When dealing with a trackmaker that is small, has a weight-bearing digit I, wide splay, and even impressed webbing, it's pretty easy to say "Yup, that's a bird!" It's when the trackmaker that is larger and with a digit I that does not always impress that people run into the "is it a large bird or a small non-avian theropod?" problem. I'm working hard to help address this issue - stay tuned for papers.

While we were there, we decided to document a large in-place (or in situ) set of Ignotornis trackways with photogrammetry. This way we get to take a 3D digital replica of the tracksite to our home lab with zero impact on the surface.

Martin Lockley (left) and Rich McCrea (right) digitally documenting Ignotornis footprints.
I also got to see how variable the preservation is with Ignotornis prints: not all that tweets leaves a hallux impression.

Footprint #3 in this photo (numbered from left to right) is much more shallow, and only leaves a hint of something that could be a hallux. Prints #1 and #2 have deeply impressed hallices.
One of my favorite photos. See the third print from the left? See how skinny the toes are compared to the other three prints? That's what varying your substrate consistency can do to your footprints. That print likely does not represent a different trackmaker, but is an Ignotornis footprint made at a different time than the other three.
The track surfaces also contain invertebrate burrows, seen here in the upper left and center right of the picture.
Bird traces are not the only ichnofossils to be found at this locality: invertebrate burrows, reptile prints, and large ornithopod footprints are preserved.

Natural cast of a left foot of an ornithopod. The wide foot and rounded toes tell us that it is a plant-eater.
Of course, modern animals were present at the site. One rattlesnake got a bit cranky with us and rattled before scooting off under a rock, and a Red-tailed Hawk flew overhead. The lady beetle was much more willing to pose for photos.

This ends my visit to the Ignotornis type locality! We collected a lot of great images and data, and I hope this will not be my only visit to the site. As the rock layers erode, more tracks will make their appearance after being hidden for 100 million years, waiting to tell us their story.


Birdy-Type References

Currie PJ. 1981. Bird footprints from the Gething Formation (Aptian, Lower Cretaceous) of northeastern British Columbia, Canada. Journal of Vertebrate Paleontology 1:257-264.

Kim, BK. 1969. A study of several sole marks in the Haman Formation. Journal
of the Geological Society of Korea 5:243-258.

Kim JY, SH Kim, KS Kim, M Lockley. 2006. The oldest record of webbed bird and pterosaur tracks from South Korea (Cretaceous Haman Formation, Changseon and Gansu Islands): more evidence of high avian diversity in East Asia. Cretaceous Research 27:56-69.

Kim JY, MG Lockley, SJ Seo, KS Kim, SH Kim, KS Baek. A paradise of Mesozoic birds: the World's richest and most diverse Cretaceous bird track assemblage from the Early Cretaceous Haman Formation of the Gajin Tracksite, Jinju, Korea. Ichnos 19:28-42.

Lockley MG, K Chin, K Houck, M Matsukawa, R Kukihara. 2009. New interpretations of Ignotornis, the first-reported Mesozoic avian footprints: implications for the paleoecology and behavior of an enigmatic Cretaceous bird. Cretaceous Research 30(4):1041–1061.

Mehl MG. 1931. Additions to the vertebrate record of the Dakota Sandstone. American Journal of Society 21:441-452.

Monday, December 8, 2014

Fluffy Feathery Post Filler

Hello Dear Readers!

I've been busy with several papers and thesis-related work, so my posting of late has been sparse and sporadic. Once the New Year rolls around (and once I get these pesky papers submitted), I'll be able to focus on some of the really fun things I want to talk about.

Here is a little teaser of one of my planned posts. It's winter, and all the shorebirds have moved on to more hospitable climes. I had a great deal of fun while collecting my neoichnology (a.k.a. modern tracks) samples this summer, and I'm missing my warmer weather and feathered friends.

One of my targets is the Solitary Sandpiper (or Tringa solitaria for the binomial) These are goofy shorebirds: they regularly sit in trees along swampy and marshy areas. They also nest in trees. When they are not pretending to be passerines (they have a hallux, but not one that is in any way useful for actual perching) they spend their time foraging for invertebrates that live on the water's edge.

What did the traces of these particular sandpipers look like? Stay tuned for next time!
These are two Solitary Sandpipers foraging by bill probing the sediment. I was very excited to see this activity up close: Solitary Sandpipers are very shy, and tend to freak out if you get too close to them.
Bill probes left by a different Solitary Sandpiper. Scale = 10cm.
I must not have seemed threatening to these Solitary Sandpipers: once they completed this particular round of foraging, they decided to have a little nap.

Sleepy sandpipers. Canada Goose tracks in the foreground.
Bird traces aren't the only traces I focus on while frolicking around in the mud (Yes, concerned campers and motorists: I am a grown woman who plays in the mud for science.) Our mammalian fauna is also well represented at these sites.

One of the questions that pops up when seeing a large carnivore print is "Cat or Dog?" Many wolf prints are misidentified as cougar prints. Dog prints all have these things in common: they almost always have exposed claws (see the sharp tips at the ends of the toes?) and the almost always have a bi-lobed metatarsal-phalangeal pad - or "heel", but it's not technically a heel, as it is made up of different bones than what make up our heel. It's more accurate to think of it as a palm or sole pad, rather than a heel pad. Regardless, this is a small wolf print. Cats have three lobes in their palm/foot pad, and almost always sheath their claws when they walk.

Stylized BIG cat prints in the cement at the Page La Brea Tar Pits Museum in LA, showing the tri-lobed pad.
Maia triple-cat-dares you to say that she is neither large nor dangerous enough to have made the prints above.
That's all I have time for at the moment. I will add that I'm finally working on a couple of papers that get to use my neoichnology collection, so I am very excited to see them in print.